PMDS: Permission-Based Malware Detection System

نویسندگان

  • Paolo Rovelli
  • Ymir Vigfusson
چکیده

The meteoric growth of the Android mobile platform has made it a main target of cyber-criminals. Mobile malware specifically targeting Android has surged and grown in tandem with the rising popularity of the platform [3, 5, 4, 6]. In response, the honus is on defenders to increase the difficulty of malware development to curb its rampant growth, and to devise effective detection mechanisms specifically targeting Android malware in order to better protect the end-users. In this paper, we address the following question: do malicious applications on Android request predictably different permissions than legitimate applications? Based on analysis of 2950 samples of benign and malicious Android applications, we propose a novel Android malware detection technique called Permission-based Malware Detection Systems (PMDS). In PMDS, we view requested permissions as behavioral markers and build a machine learning classifier on those markers to automatically identify for unseen applications potentially harmful behavior based on the combination of permissions they require. By design, PMDS has the potential to detect previously unknown, and zero-day or next-generation malware. If attackers adapt and request for fewer permissions, PMDS will have impeded the simple strategies by which malware developers currently abuse their victims. Experimental results show that PMDS detects more than 92–94% of previously unseen malware with a false positives rate of 1.52–3.93%.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-Phase Detection and Classification for Android Malware Based on Common Behaviors

Android is one of the most popular operating systems used in mobile devices. Its popularity also renders it a common target for attackers. We propose an efficient and accurate three-phase behavior-based approach for detecting and classifying malicious Android applications. In the proposed approach, the first two phases detect a malicious application and the final phase classifies the detected m...

متن کامل

Detection of Malware on Android based on Application Features

Threat of mobile malware is increasing day by day. Since Android is the most popular and maximum sold mobile phone, there is an increasing threat of malware on Android based mobile device. The different antimalware products available in market can detect the malware in its original form. But they cannot detect the malware after applying some form of obfuscation or transformation to the malware....

متن کامل

An Supervised Method for Detection Malware by Using Machine Learning Algorithm

There is Explosive increase in mobile application more and more threat, viruses and benign are migrate from traditional PC to mobile devices. Existence of this information and access creates more importance which makes device attractive targets for malicious entities. For this we proposed a probabilistic discriminative model which has regularized logistic regression for android malware detectio...

متن کامل

Permission-based Malware Detection Mechanisms on Android: Analysis and Perspectives

Android security has been built upon a permission-based mechanism which restricts accesses of third-party Android applications to critical resources on an Android device. The user must accept the set of permissions an application requires, before proceeding the installation. This process aims to inform the users of the risk of installing and using an application on their device; but most often,...

متن کامل

Android Malware Detection Using Backpropagation Neural Network

The rapid growing adoption of android operating system around the world affects the growth of malware that attacks this platform. One possible solution to overcome the threat of malware is building a comprehensive system to detect existing malware. This paper proposes multilayer perceptron artificial neural network trained with backpropagation algorithm to determine an application is malware or...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014